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According to the principles of quantum mechanics, the classical Lorentz-Dirac 
equations of the electron should follow from quantum electrodynamics in the 
classical limit. We show this is indeed true for the special case in which the 
charge does not radiate, provided the momentum operators in the Dirac theory 
are identified, in the classical limit, with the effective momenta of the Lorentz- 
Dirac equations. 

The classical electron theory provides the following equations of 
motion for an electron in an external field of force F~ xt (Dirac, 1938; 
Tirapegui, 1978): : .  

2ct " + i~p t) ~ } (1)  d (too + zXm)v. = xt + - 2  
ds 

According to the principles of quantum mechanics, these classical equa- 
tions and their consequences should be consistent with and, in the limit of 
large quantum numbers, should follow from quantum mechanics. The 
clarification of this important and long-standing problem remains unsolved 
(Rohrlich, 1963). It is well known that the JWKB method applied to the 
Dirac equation yields the equations (1) without the radiation reaction 
terms (Rohrlich, 1963; Rubinow and Keller, 1963). Pilkuhn (1979) presents 
a derivation of the Dirac equation from quantum electrodynamics. This 
derivation, which is based on the Bethe-Salpeter equations, is clearly 
approximative, since it yieds the Dirac equation, and the Dirac equation 
does not give the exact equations (1) in the classical limit. A resolution of 
this problem will follow from a much deeper understanding of quantum 
electrodynamics and its classical limit (Bialynicki-Birula, 1971). However, 
is it possible that, at least in some special cases, this discrepancy between 

~Department of Physics, Pennsylvania State University, Abington, Pennsylvania 19001. 

2031 

0020-7748/93/1100-2031507.00/0 �9 1993 Plenum Publishing Corporation 



2032 Moylan 

the classical and quantum theories may be resolved? We wish to show that 
it is indeed so. 

As our starting point we consider the description of a classical charged 
particle given in Browne (1970). In that paper an effective motion of a 
charged particle is considered; it is distinguished from the motion as 
described by equation (1) in that the charge performs a classical Z i t terbe-  
wegung about the effective motion. First, define the effective electron 
m o m e n t a  (Browne, 1969, 1970) 

P~ = (too + Am)v~ - xf;~ (2) 

and an effective mass 

M 2 = P~P~ = m 2 + tc2I (m = m o + Am) (3) 

where x = 2c~/3 and 

I = but~ ~ = y6[a 2 - (v x a) 2] (4) 

y = (1 - v 2 / c  2) -1/2, and a and v are the three-acceleration and three-veloc- 
ity of the charge, respectively. In obtaining equation (3) we have used 
(Dirac, 1938) 

v~,v ~' = 1, v~l) ~ = 0 (5) 

Expressing equation (1) in terms of the P~, we obtain (Browne, 1970) 

Pa = F ext + tcIv~ (6) 

We claim that m 2 is a conserved quantity. To see this, dot both sides of 
equation (1) with v, to obtain 

d ( 1  2 ) 
ds -2mY -xvVt;. = 0  (7) 

Now use equation (5) to conclude 

d ( m  ) = 0 (8) 

This result contradicts equation (15) of Browne (1970). 2 

{Definit ions and  Notation.  The units we choose are such that 
h = c = 1, and ~ = e 2. Here Am = e2/a is the electromagnetic mass. [a has 
various physical interpretations, such as that of a regularization parameter 
(Tirapegui, 1978) and also as the classical electron radius (Dirac, 1938; 

2Browne's assumption [his equation (13)] with our equation (8) implies I = 0. This is the case 
we consider below. 
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Rohrlich, 1965)]. F~ xt = eF~XtvV, where F~ xt is the external electromagnetic 
field. Gamma matrices, metric, etc., are those of Bjorken and Drell (1964). 
The Einstein summation convention is used throughout, a,v =(i /2)  
(~,7~-  7~Yu) are relativistic generalizations of the Pauli matrices, i.e., 

/ cr 3 0 \ 
al2 = [ . ,  ] ,  etc. The components of the spin angular momentum tensor 

x, u ~r3/ 
are Suv = (i/2)o-,v. They are the generators of the spin representation of the 
Lorentz group, SOo(1,3) (Cartan, 1966). In going over to quantum 
mechanics we have . =  d/ds  = �89 d/dt ,  and for any observable O, 

dO O0 
d-T = i[H, O] + O--t- (9) 

where H =  ~ ' P + f l m  is the Dirac Hamiltonian for a spin 1/2 system 
e x t  v 1 having mass m. Also, F ext --*(e/2)F~v ~ and v~ --* 5~ in going over to 

quantum mechanics.) 

Let us now consider the special case of vanishing L For circular 
motion, a x v = 0, so that I = 0 implies a = 0 by equation (4). However, 
this need not be true if a and v are not perpendicular to one another. For 
1 = 0, (6) becomes 

P~ = F~ xt (10) 

which equations are just the Lorentz force equations, i.e., they are the 
Lorentz-Dirac equations (1) excluding the radiation reaction terms. We 
will shortly consider a relativistic and quantum mechanical spin-l/2 system 
having real mass m and having momenta given by a quantum mechanical 
generalization of (2). If  we can show that equations (10) follow in the 
classical limit from the equation of our quantum mechanical system, then 
we will have provided a resolution of the above-mentioned discrepancy 
between the classical and quantum theories, at least in cases for which I 
vanishes. We now proceed to show this. 

In going over to quantum mechanics we consider the Dirac equation 
for a reall mass, spin-l/2 system 

7~P,~ , =m~, (11) 

where 

P~, =- iO~, - eA~, (12) 

are the operators for the effective momenta of the charge. We insist that 
there be operator analogs of equations (2), and that they be 

1 tr  
P, =/;~ + ~ ArnT, - ~ 7 ,  (13) 

acting on any solution of (11). 
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The bare momenta P~ will be determined from consistency between 
equation (11) and these equations. For this we consider the operator 
identity, which is valid acting on arbitrary solutions of  the Dirac equation 
(Moylan, 1985) 

P ,  = mT~ - i~ (14) 

Using this, we eliminate ~ from (13), and obtain for the bare momenta 

( i x )  A m i ~ m  
/~, = 1 + ~ -  P~ - - - ~ - ? ,  ---~--?~ (15) 

If  we let 

then we obtain 

Am 2~ 
= - i - -  (16) 

m 3 

Equation (16) implies the classically untenable and puzzling notion of an 
imaginary electromagnetic mass. Of course, since the electromagnetic mass 
is not a directly observed quantity, the value of Am obtained from (16) 
does not pose any theoretical difficulty. 

Equation (17) represents the effect on the momenta of a change of 
scale 

1 z 

x ~ x ~  = 2-1x~, 2 = 1 +Am/m (18) 

This conformal transformation [or more precisely, this element of  the 
complexification, SL(4, C), of the conformal group, SU(2, 2)] induces an 
action on spinor valued functions over complexified Minkowski space. 
Explicitly (Paneitz et al., 1987) 

UW(g): ~(x) ---> q;(x) = [UW(g)~l(x) = S(2)q~(,~-'x) (19) 

Under this transformation the Dirac equation (11) becomes (Paneitz et al., 
1987) 

7 ,P  ~b(x) = too+ Am ~(x')  (20) 

We have thus demonstrated the equivalence of (11) under changes of scale 
with the original Dirac equation of the theory, up to a mass renormaliza- 
tion. The existence of a conformally invariant interaction Lagrangian is 
assured for the case w =-32 (Segal, 1991). 
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